Leslie Gunatilaka

Leslie Gunatilaka is Professor at the School of Natural Resources and the Environment and Director of the Natural Products Center. He is also Adjunct Professor of Department of Nutritional Sciences, and a member of the Arizona Cancer Center. He is a member of several professional societies, editorial boards, and pharmaceutical company advisory groups. He is a Fellow of the Academy of Sciences for the Developing World (TWAS), Italy, and the National Academy of Sciences, Sri Lanka. Dr. Gunatilaka has over 200 peer-reviewed publications and book chapters and over 150 communications in natural product science to his credit. He is the recipient of the Sri Lankan Presidents’ gold medal for “creating a center of excellence in natural products research at the University of Peradeniya, Sri Lanka” (1987), CaPCURE award for “dedication to ending prostate cancer as a risk for all men and their families” (2000), Research Faculty of the Year Award of the UA College of Agriculture and Life Sciences (2003), the UA Asian American Faculty, Staff and Alumni Association Outstanding Faculty Award (2005), and the UA Leading Edge Researcher Award for Innovative Research (2012). He has delivered over 100 invited lectures worldwide and was the Chief Guest and Plenary Lecturer at the International Herbal Medicine Conference held in Sri Lanka (2005), and the Keynote Speaker and the Guest of Honor at Chemtech-2007, an International Conference organized by the Institute of Chemistry, Ceylon. His current research interests include discovery, identification of protein targets, and structure-activity relationship (SAR) studies of natural product-based drugs to treat cancer, neurodegenerative, and other diseases from plants, and plant- and lichen-associated microorganisms, maximization of chemistry diversity and production of microbial and plant secondary metabolites, and scientific investigation of medicinal plants and herbal supplements.

Thielavialides A E, Nor Spiro Azaphilones, And A Bis Spiro Azaphilone From Thielavia Sp. Pa0001, An Endophytic Fungus Isolated From Aeroponically Grown Physalis Alkekengi. Source: Journal Of Natural Products
June 2nd, 2014 PMID: 24882589 Leslie Gunatilaka
Four new nor-spiro-azaphilones, thielavialides A-D (1- 4), a new bis-spiro-azaphilone, thielavialide E (5), together with pestafolide A (6), were isolated from the endophytic fungal strain, Thielavia sp. PA0001, occurring in the healthy leaf tissue of aeroponically grown Physalis alkekengi. The structures and relative configurations of 1-5 were established on the basis of their MS and NMR data. Possible biosynthetic pathways to thielavialides A-E (1- 5) from pestafolide A (6), some involving a Favorskii-like rearrangement, are proposed.<br /><br />
Structure Activity Relationships For Withanolides As Inducers Of The Cellular Heat Shock Response. Source: Journal Of Medicinal Chemistry
March 25th, 2014 PMID: 24625088 Leslie Gunatilaka
To understand the relationship between the structure and the remarkably diverse bioactivities reported for withanolides, we obtained withaferin A (WA; 1) and 36 analogues (2-37) and compared their cytotoxicity to cytoprotective heat-shock-inducing activity (HSA). By analyzing structure-activity relationships for the series, we found that the ring A enone is essential for both bioactivities. Acetylation of 27-OH of 4-epi-WA (28) to 33 enhanced both activities, whereas introduction of β-OH to WA at C-12 (29) and C-15 (30) decreased both activities. Introduction of β-OAc to 4,27-diacetyl-WA (16) at C-15 (37) decreased HSA without affecting cytotoxicity, but at C-12 (36), it had minimal effect. Importantly, acetylation of 27-OH, yielding 15 from 1, 16 from 14, and 35 from 34, enhanced HSA without increasing cytotoxicity. Our findings demonstrate that the withanolide scaffold can be modified to enhance HSA selectively, thereby assisting development of natural product-inspired drugs to combat protein aggregation-associated diseases by stimulating cellular defense mechanisms.<br /><br />
Secoemestrin D, A Cytotoxic Epitetrathiodioxopiperizine, And Emericellenes A E, Five Sesterterpenoids From Emericella Sp. Ast0036, A Fungal Endophyte Of Astragalus Lentiginosus1. Source: Journal Of Natural Products
November 19th, 2013 PMID: 24251417 Leslie Gunatilaka
A new epitetrathiodioxopiperizine, secoemestrin D (1), and five sesterterpenoids bearing a new carbon skeleton, emericellenes A-E (2-6), together with previously known fungal metabolites, sterigmatocystin (7), arugosin C (8), and epiisoshamixanthone (9), were obtained from the endophytic fungal strain Emericella sp. AST0036 isolated from a healthy leaf tissue of Astragalus lentiginosus. The planar structures and relative configurations of the new metabolites 1-6 were elucidated using MS and 1D and 2D NMR spectroscopic data. All compounds were evaluated for their potential anticancer activity using a panel of six tumor cell lines and normal human fibroblast cells. Only metabolites 1 and 7 showed cytotoxic activity. More importantly, secoemestrin D (1) exhibited significant cytotoxicity with IC50 values ranging from 0.06 to 0.24 μM and moderate selectivity to human glioma (SF-268) and metastatic breast adenocarcinoma (MDA-MB-231) cell lines.<br /><br />
Phomapyrrolidones A C, Antitubercular Alkaloids From The Endophytic Fungus Phoma Sp. Nrrl 46751. Source: Journal Of Natural Products
September 30th, 2013 PMID: 24079882 Leslie Gunatilaka
Three new alkaloids, phomapyrrolidones A-C (1-3), bearing a cyclopenta[b]fluorene ring system were isolated from the mycelium extract of the endophytic fungal strain Phoma sp. NRRL 46751, inhabiting Saurauia scaberrinae. Methylation of 1 afforded its N-methyl derivative 4. The planar structures and relative configurations of 1-4 were elucidated by extensive spectroscopic analysis. Phomapyrrolidones B (2) and C (3) exhibited weak antitubercular activity at subcytotoxic concentrations.<br /><br />
Endohyphal Bacterium Enhances Production Of Indole 3 Acetic Acid By A Foliar Fungal Endophyte. Source: Plo S One
September 24th, 2013 PMID: 24086270 Leslie Gunatilaka
Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.<br /><br />
Structure Activity Relationship (Sar) Of Withanolides To Inhibit Hsp90 For Its Activity In Pancreatic Cancer Cells. Source: Investigational New Drugs
July 26th, 2013 PMID: 23887853 Leslie Gunatilaka
Withaferin A (WA), a naturally occurring steroidal lactone, directly binds to Hsp90 and leads to the degradation of Hsp90 client protein. The purpose of this study is to investigate the structure activity relationship (SAR) of withanolides for their inhibition of Hsp90 and anti-proliferative activities in pancreatic cancer cells. In pancreatic cancer Panc-1 cells, withaferin A (WA) and its four analogues withanolide E (WE), 4-hydroxywithanolide E (HWE), 3-aziridinylwithaferin A (AzWA) inhibited cell proliferation with IC50 ranged from 1.0 to 2.8 μM. WA, WE, HWE, and AzWA also induced caspase-3 activity by 21-, 6-, 11- and 15-fold, respectively, in Panc-1 cells, while withaperuvin (WP) did not show any activity. Our data showed that WA, WE, HWE, and AzWA, but not WP, all directly bound to Hsp90 and induced Hsp90 aggregation,hence inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins Akt and Cdk4 through proteasome-dependent pathway in pancreatic cancer cells. However, only WA, HWE and AzWA disrupted Hsp90-Cdc37 complexes but not WE and WP. SAR study suggested that the C-5(6)-epoxy functional group contributes considerably for withanolide to bind to Hsp90, inhibit Hsp90 chaperone activity, and result in Hsp90 client protein depletion. Meanwhile, the hydroxyl group at C-4 of ring A may enhance withanolide to inhibit Hsp90 activity and disrupt Hsp90-Cdc37 interaction. These SAR data provide possible mechanisms of anti-proliferative action of withanolides.<br /><br />
Synthesis And Biological Evaluation Of Novobiocin Analogues As Potential Heat Shock Protein 90 Inhibitors. Source: Bioorganic & Medicinal Chemistry
June 27th, 2013 PMID: 23859777 Leslie Gunatilaka
Recent studies have shown that novobiocin (NB), a member of the coumermycin (CA) family of antibiotics with demonstrated DNA gyrase inhibitory activity, inhibits Heat shock protein 90 (HSP90) by binding weakly to a putative ATP-binding site within its C-terminus. To develop more potent HSP90 inhibitors that target this site and to define structure-activity relationships (SARs) for this class of compounds, we have synthesized twenty seven 3-amido-7-noviosylcoumarin analogues starting from NB and CA. These were evaluated for evidence of HSP90 inhibition using several biological assays including inhibition of cell proliferation and cell cycle arrest, induction of the heat shock response, inhibition of luciferase-refolding in vitro, and depletion of the HSP90 client protein c-erbB-2/HER-2/neu (HER2). This SAR study revealed that a substantial increase in biological activity can be achieved by introduction of an indole-2-carboxamide group in place of 4-hydroxy-isopentylbenzamido group at C-3 of NB in addition to removal/derivatization of the 4-hydroxyl group from the coumarin ring. Methylation of the 4-hydroxyl group in the coumarin moiety moderately increased biological activity as shown by compounds 11 and 13. Our most potent new analogue 19 demonstrated biological activities consistent with known HSP90-binding agents, but with greater potency than NB.<br /><br />
Geopyxins A E, Ent Kaurane Diterpenoids From Endolichenic Fungal Strains Geopyxis Aff. Majalis And Geopyxis Sp. Az0066: Structure Activity Relationships Of Geopyxins And Their Analogues. Source: Journal Of Natural Products
January 20th, 2012 PMID: 22264149 Leslie Gunatilaka
Four new ent-kaurane diterpenoids, geopyxins A-D (1-4), were isolated from Geopyxis aff. majalis, a fungus occurring in the lichen Pseudevernia intensa, whereas Geopyxis sp. AZ0066 inhabiting the same host afforded two new ent-kaurane diterpenoids, geopyxins E and F (5 and 6), together with 1 and 3. The structures of 1-6 were established on the basis of their spectroscopic data, while the absolute configurations were assigned using modified Mosher's ester method. Methylation of 1-3, 5, and 6 gave their corresponding methyl esters 7-11. On acetylation, 1 and 7 yielded their corresponding monoacetates 12 and 14 and diacetates 13 and 15. All compounds were evaluated for their cytotoxic and heat-shock induction activities. Compounds 2, 7-10, 12, 14, and 15 showed cytotoxic activity in the low micromolar range against all five cancer cell lines tested, but only compounds 7-9, 14, and 15 were found to activate the heat-shock response at similar concentrations. From a preliminary structure-activity perspective, the electrophilic α,β-unsaturated ketone carbonyl motif present in all compounds except 6 and 11 was found to be necessary but not sufficient for both cytotoxicity and heat-shock activation.<br /><br />
Using The Heat Shock Response To Discover Anticancer Compounds That Target Protein Homeostasis. Source: Acs Chemical Biology
November 30th, 2011 PMID: 22050377 Leslie Gunatilaka
Unlike normal tissues, cancers experience profound alterations in protein homeostasis. Powerful innate adaptive mechanisms, especially the transcriptional response regulated by Heat Shock Factor 1 (HSF1), are activated in cancers to enable survival under these stressful conditions. Natural products that further tax these stress responses can overwhelm the ability to cope and could provide leads for the development of new, broadly effective anticancer drugs. To identify compounds that drive the HSF1-dependent stress response, we evaluated over 80,000 natural and synthetic compounds as well as partially purified natural product extracts using a reporter cell line optimized for high-throughput screening. Surprisingly, many of the strongly active compounds identified were natural products representing five diverse chemical classes (limonoids, curvularins, withanolides, celastraloids, and colletofragarones). All of these compounds share the same chemical motif, an α,β-unsaturated carbonyl functionality, with strong potential for thiol-reactivity. Despite the lack of a priori mechanistic requirements in our primary phenotypic screen, this motif was found to be necessary albeit not sufficient, for both heat-shock activation and inhibition of glioma tumor cell growth. Within the withanolide class, a promising therapeutic index for the compound withaferin A was demonstrated in vivo using a stringent orthotopic human glioma xenograft model in mice. Our findings reveal that diverse organisms elaborate structurally complex thiol-reactive metabolites that act on the stress responses of heterologous organisms including humans. From a chemical biology perspective, they define a robust approach for discovering candidate compounds that target the malignant phenotype by disrupting protein homeostasis.<br /><br />
An Analog Of Withaferin A Activates The Mapk And Glutathione "Stress" Pathways And Inhibits Pancreatic Cancer Cell Proliferation. Source: Cancer Investigation
November 17th, 2011 PMID: 22085270 Leslie Gunatilaka
Withaferin A (WA) (1) and two analogs [4-epi-withaferin A (2) and 4,27-diacetyl-4-epi-withaferin A (3)] were evaluated for antitumor activity in pancreatic cancer cells. IC(50) for 1, 2, and 3 were 0.87, 0.45, and 0.29 ?M (BxPC-3); 1.28, 1.53, and 0.52 ?M (MIAPaCa-2); and 0.59, 2.25, and 0.56 ?M (PANC-1), respectively. We chose WA analog 3 for functional studies with confirmatory RT-PCR and Western blotting. ANOVA identified 33 (MIAPaCa-2), 54 (PANC-1), and 48 (BxPC-3) gene expression changes. Fisher exact test demonstrated MAPK and glutathione pathways to be overexpressed with WA analog 3. WA analog 3 elicits a dose- and time-dependent apoptosis, activates MAPK and glutathione ?stress? pathways, and inhibits proliferation.<br /><br />
Smardaesidins A G, Isopimarane And 20 Nor Isopimarane Diterpenoids From Smardaea Sp., A Fungal Endophyte Of The Moss Ceratodon Purpureus. Source: Journal Of Natural Products
October 14th, 2011 PMID: 21999655 Leslie Gunatilaka
Five new isopimarane diterpenes, smardaesidins A-E (1- 5) and two new 20-nor-isopimarane diterpenes, smardaesidins F (6) and G (7), together with sphaeropsidins A (8) and C-F (10-13) were isolated from an endophytic fungal strain, Smardaea sp. AZ0432, occurring in living photosynthetic tissue of the moss Ceratodon purpureus . Of these, smardaesidins B (2) and C (3) were obtained as an inseparable mixture of isomers. Chemical reduction of sphaeropsidin A (8) afforded sphaeropsidin B (9), whereas catalytic hydrogenation of 8 yielded 7-O-15,16-tetrahydrosphaeropsidin A (14) and its new derivative, 7-hydroxy-6-oxoisopimara-7-en-20-oic acid (15). The acetylation and diazomethane reaction of sphaeropsidin A (8) afforded two of its known derivatives, 6-O-acetylsphaeropsidin A (16) and 8,14-methylenesphaeropsidin A methyl ester (17), respectively. Methylation of 10 yielded sphaeropsidin C methyl ester (18). The planar structures and relative configurations of the new compounds 1-7 and 15 were elucidated using MS and 1D and 2D NMR experiments, while the absolute configurations of the stereocenters of 4 and 6-8 were assigned using a modified Mosher's ester method, CD spectra, and comparison of specific rotation data with literature values. Compounds 1-18 were evaluated for their potential anticancer activity using several cancer cell lines and cells derived from normal human primary fibroblasts. Of these, compounds 8, 11, and 16 showed significant cytotoxic activity. More importantly, sphaeropsidin A (8) showed cell-type selectivity in the cytotoxicity assay and inhibited migration of metastatic breast adenocarcinoma (MDA-MB-231) cells at subcytotoxic concentrations.<br /><br />
Unusual Withanolides From Aeroponically Grown Withania Somnifera. Source: Phytochemistry
March 22nd, 2011 PMID: 21315384 Leslie Gunatilaka
In an attempt to maximize production and the structural diversity of plant metabolites, the effect of growing the medicinal plant Withania somnifera under soil-less aeroponic conditions on its ability to produce withaferin A and withanolides was investigated. It resulted in the isolation and characterization of two compounds, 3α-(uracil-1-yl)-2,3-dihydrowithaferin A (1) and 3β-(adenin-9-yl)-2,3-dihydrowithaferin A (2), in addition to 10 known withanolides including 2,3-dihydrowithaferin A-3β-O-sulfate. 3β-O-Butyl-2,3-dihydrowithaferin A (3), presumably an artifact formed from withaferin A during the isolation process was also encountered. Reaction of withaferin A with uracil afforded 1 and its epimer, 3β-(uracil-1-yl)-2,3-dihydrowithaferin A (4). The structures of these compounds were elucidated on the basis of their high resolution mass and NMR spectroscopic data.<br /><br />
Biomimetic Conversion Of ( ) Fusoxypyridone And ( ) Oxysporidinone To ( ) Sambutoxin: Further Evidence For The Structure Of The Tricyclic Pyridone Alkaloid, ( ) Fusoxypyridone. Source: Bioorganic & Medicinal Chemistry Letters
March 16th, 2011 PMID: 21419624 Leslie Gunatilaka
Biomimetic-type reactions of the tricyclic pyridone alkaloid, (-)-fusoxypyridone [(-)-4,6'-anhydrooxysporidinone] (1), recently encountered in an endophytic strain of Fusarium oxysporum, and (-)-oxysporidinone (2) afforded (-)-sambutoxin (3) and an analogue of 1, identified as (-)-1'(6')-dehydro-4,6'-anhydrooxysporidinone (4), thus confirming the structure previously proposed for 1 and suggesting that 1-3 bear the same relative stereochemistry. Oxidation of 4 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded a hitherto unknown sambutoxin analogue, (-)-4,2'-anhydrosambutoxin (5).<br /><br />
Microbial Transformations Of Aryltetralone And Aryltetralin Lignans By Cunninghamella Echinulata And Beauveria Bassiana. Source: Journal Of Natural Products
October 20th, 2010 PMID: 20961092 Leslie Gunatilaka
Microbiological transformation of the aryltetralone lignan (-)-8'-epi-aristoligone (1) with Cunninghamella echinulata ATCC 10028B afforded two known natural lignans, (-)-holostyligone (3) and (-)-arisantetralone (4). Incubation of the aryltetralin lignan (-)-isogalbulin (2), obtained by chemical transformation of 1, with C. echinulata ATCC 10028B afforded the known lignan aryltetralol (5) and seven new metabolites, (-)-8-hydroxyisogalbulin (6), (-)-7-methoxyisogalbulin (7), (-)-4'-O-demethyl-8-hydroxyisogalbulin (8), (-)-7-methoxy-8-hydroxyisogalbulin (9), (-)-4'-O-demethyl-7-methoxyisogalbulin (10), (-)-4',5-O-didemethylcyclogalgravin (11), and (-)-4'-O-demethylcyclogalgravin (12). When 2 was subjected to biotransformation with Beauveria bassiana ATCC 7159, (-)-8-hydroxyisogalbulin (6) was the only isolable product. The structures of all new compounds were established by detailed analysis of their spectroscopic data.<br /><br />
Pkc Signaling Regulates Drug Resistance Of The Fungal Pathogen Candida Albicans Via Circuitry Comprised Of Mkc1, Calcineurin, And Hsp90. Source: P Lo S Pathogens
August 26th, 2010 PMID: 20865172 Leslie Gunatilaka
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.<br /><br />
Maximizing Chemical Diversity Of Fungal Metabolites: Biogenetically Related Heptaketides Of The Endolichenic Fungus Corynespora Sp. (1). Source: Journal Of Natural Products
June 25th, 2010 PMID: 20521776 Leslie Gunatilaka
In an attempt to explore the biosynthetic potential of the endolichenic fungus Corynespora sp. BA-10763, its metabolite profiles under several culture conditions were investigated. When cultured in potato dextrose agar, it produced three new heptaketides, 9-O-methylscytalol A (1), 7-desmethylherbarin (2), and 8-hydroxyherbarin (3), together with biogenetically related metabolites scytalol A (4), 8-O-methylfusarubin (5), scorpinone (6), and 8-O-methylbostrycoidin (7), which are new to this organism, and herbarin (8), a metabolite previously encountered in this fungal strain. The use of malt extract agar as the culture medium led to the isolation of 6, 8, 1-hydroxydehydroherbarin (9), and 1-methoxydehydroherbarin (10), which was found to be an artifact formed during the extraction of the culture medium with methanol. The structures of all new compounds were determined by interpretation of their spectroscopic data and chemical interconversions.<br /><br />
Tricinonoic Acid And Tricindiol, Two New Irregular Sesquiterpenes From An Endophytic Strain Of Fusarium Tricinctum. Source: Natural Product Research
March 11th, 2010 PMID: 20221941 Leslie Gunatilaka
Two new rare irregular sesquiterpenes, tricinonoic acid (1) and tricindiol (2), and the known furanopyrrolidones, NG-391 (3) and NG-393 (4), have been isolated from an EtOAc extract of Fusarium tricinctum, a fungus endophytic in the root tissue of the Sonoran desert plant, Rumex hymenosepalus. The structures of 1 and 2 were elucidated on the basis of their high-resolution mass, 1D and 2D NMR spectroscopic data. A possible biosynthetic route to 1 and 2 from farnesyl diphosphate is proposed.<br /><br />
Withaferin A Targets Heat Shock Protein 90 In Pancreatic Cancer Cells. Source: Biochemical Pharmacology
December 16th, 2009 PMID: 19769945 Leslie Gunatilaka
The purpose of this study is to investigate the efficacy and the mechanism of Hsp90 inhibition of Withaferin A (WA), a steroidal lactone occurring in Withania somnifera, in pancreatic cancer in vitro and in vivo. Withaferin A exhibited potent antiproliferative activity against pancreatic cancer cells in vitro (with IC(50)s of 1.24, 2.93 and 2.78 microM) in pancreatic cancer cell lines Panc-1, MiaPaCa2 and BxPc3, respectively. Annexin V staining showed that WA induced significant apoptosis in Panc-1 cells in a dose-dependent manner. Western blotting demonstrated that WA inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins (Akt, Cdk4 and glucocorticoid receptor), which was reversed by the proteasomal inhibitor, MG132. WA-biotin pull down assay of Hsp90 using Panc-1 cancer cell lysates and purified Hsp90 showed that WA-biotin binds to C-terminus of Hsp90 which was competitively blocked by unlabeled WA. Co-immunoprecipitation exhibited that WA (10 microM) disrupted Hsp90-Cdc37 complexes from 1 to 24h post-treatment, while it neither blocked ATP binding to Hsp90, nor changed Hsp90-P23 association. WA (3, 6mg/kg) inhibited tumor growth in pancreatic Panc-1 xenografts by 30% and 58%, respectively. These data demonstrate that Withaferin A binds Hsp90, inhibits Hsp90 chaperone activity through an ATP-independent mechanism, results in Hsp90 client protein degradation, and exhibits in vivo anticancer activity against pancreatic cancer.<br /><br />
Displaying 5 of 18 publications more | all