Nicolas Larmonier

Nicolas Larmonier, PhD, is an Associate Professor of Pediatrics, with a joint appointment with Immunobiology at the University of Arizona College of Medicine. Dr. Larmonier’s primary field of research has essentially focused on cancer immunology and immunotherapy, with a particular emphasis on the understanding of the mechanisms of tumor-induced immunosuppression.

He has developed different research areas pertaining to the role and modalities of induction of regulatory lymphocytes (Treg) and Myeloid-Derived Suppressor Cells (MDSC), two populations of immunosuppressive cells which impair anti-cancer immune responses. He has also extensively studied the non-conventional cytotoxic activity of dendritic cells, the main “messengers” of the immune system. The role of newly described T helper lymphocyte subsets, such as Th-17, in cancer is being explored. Strategies to eliminate or inactivate tumor-induced immunoinhibitory Treg or MDSC are currently being evaluated. Combination approaches associating chemotherapeutic drugs and immunotherapy are also under investigation. He has published over 35 articles in the field.

Dr. Larmonier has led the research work of post-doctoral fellows, graduate, undergraduate, medical and high school students and is faculty member in the Immunology and Cancer Biology graduate programs.

Dendritic Cell Tumor Killing Activity And Its Potential Applications In Cancer Immunotherapy. Source: Critical Reviews In Immunology
March 20th, 2013 PMID: 23510023 Nicolas Larmonier
Universally viewed as the sentinels and messengers of the immune system and traditionally referred to as professional antigen-presenting cells, dendritic cells (DCs) play a fundamental role in antitumor immunity. DCs are uniquely equipped with the ability to acquire, process, and present to T lymphocytes tumor-derived antigens. They can drive the differentiation of naive T cells into activated tumor-specific effector lymphocytes. DCs also dictate the type and regulate the strength and duration of T-cell responses. In addition, they contribute to natural killer and natural killer T-cell antitumoral function and to B-cell-mediated immunity. Besides this cardinal role as orchestrators of innate and adaptive immune responses, many studies have provided evidence that DCs can also function as direct cytotoxic effectors against tumors. This less conventional aspect of DC function has, however, raised controversy as it relates to the origin of these cells and the induction, regulation, and mechanisms underlying their tumoricidal activity. The possible impact of the cytotoxic function of DCs on their capability to present antigens also has been the focus of intensive research. This review examines these questions and discusses the biological significance of this nontraditional property and possible strategies to exploit the killing potential of DCs in cancer immunotherapy.<br /><br />
Th1 And Th17 Lymphocytes Expressing Cd161 Are Implicated In Giant Cell Arteritis And Polymyalgia Rheumatica Pathogenesis. Source: Arthritis And Rheumatism
October 31st, 2012 PMID: 22833233 Nicolas Larmonier
OBJECTIVE:<br />Giant cell arteritis (GCA) is the most frequently occurring vasculitis in elderly individuals, and its pathogenesis is not fully understood. The objective of this study was to decipher the role of the major CD4+ T cell subsets in GCA and its rheumatologic form, polymyalgia rheumatica (PMR).<br /><br />METHODS:<br />A prospective study of the phenotype and the function of major CD4+ T cell subsets (Th1, Th17, and Treg cells) was performed in 34 untreated patients with GCA or PMR, in comparison with 31 healthy control subjects and with the 27 treated patients who remained after the 7 others withdrew.<br /><br />RESULTS:<br />Compared with control subjects, patients with GCA and patients with PMR had a decreased frequency of Treg cells and Th1 cells, whereas the percentage of Th17 cells was significantly increased. Furthermore, an analysis of temporal artery biopsy specimens obtained from patients affected by GCA for whom biopsy results were positive demonstrated massive infiltration by Th17 and Th1 lymphocytes without any Treg cells. After glucocorticoid treatment, the percentages of circulating Th1 and Th17 cells decreased, whereas no change in the Treg cell frequency was observed. The frequency of CD161+CD4+ T cells, which are considered to be Th17 cell precursors, was similar in patients and control subjects. However, these cells highly infiltrated GCA temporal artery biopsy specimens, and their ability to produce interleukin-17 in vitro was significantly enhanced in patients with GCA and patients with PMR and was correlated with a decrease in the phosphorylated form of STAT-1.<br /><br />CONCLUSION:<br />This study is the first to demonstrate that the frequency of Treg cells is decreased in patients with GCA and patients with PMR, and that CD161+CD4+ T lymphocytes, differentiated into Th1 cells and Th17 cells, are involved in the pathogenesis of GCA and PMR.<br /><br />
Cytotoxic Dendritic Cells Generated From Cancer Patients. Source: Journal Of Immunology (Baltimore, Md. : 1950)
July 29th, 2011 PMID: 21804019 Nicolas Larmonier
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.<br /><br />
Modulation Of Neutrophil Motility By Curcumin: Implications For Inflammatory Bowel Disease. Source: Inflammatory Bowel Diseases
January 12th, 2011 PMID: 20629184 Nicolas Larmonier
BACKGROUND:<br>Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting, and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in inflammatory bowel disease (IBD) transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation, and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration.<br><br>METHODS:<br>We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo.<br><br>RESULTS:<br>Curcumin attenuated lipopolysaccharide (LPS)-stimulated expression and secretion of macrophage inflammatory protein (MIP)-2, interleukin (IL)-1β, keratinocyte chemoattractant (KC), and MIP-1α in colonic epithelial cells (CECs) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC, or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At nontoxic concentrations, curcumin inhibited random neutrophil migration, suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation, and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis.<br><br>CONCLUSIONS:<br>Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis.<br><br>
Personalized Dendritic Cell Based Tumor Immunotherapy. Source: Immunotherapy
July 23rd, 2010 PMID: 20161666 Nicolas Larmonier
Advances in the understanding of the immunoregulatory functions of dendritic cells (DCs) in animal models and humans have led to their exploitation as anticancer vaccines. Although DC-based immunotherapy has proven clinically safe and efficient to induce tumor-specific immune responses, only a limited number of objective clinical responses have been reported in cancer patients. These relatively disappointing results have prompted the evaluation of multiple approaches to improve the efficacy of DC vaccines. The topic of this review focuses on personalized DC-based anticancer vaccines, which in theory have the potential to present to the host immune system the entire repertoire of antigens harbored by autologous tumor cells. We also discuss the implementation of these vaccines in cancer therapeutic strategies, their limitations and the future challenges for effective immunotherapy against cancer.<br><br>
Killer Dendritic Cells And Their Potential For Cancer Immunotherapy. Source: Cancer Immunology, Immunotherapy : Cii
July 18th, 2009 PMID: 19618185 Nicolas Larmonier
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.<br><br>
Imatinib Mesylate Inhibits Cd4+ Cd25+ Regulatory T Cell Activity And Enhances Active Immunotherapy Against Bcr Abl Tumors. Source: Journal Of Immunology (Baltimore, Md. : 1950)
November 4th, 2008 PMID: 18981115 Nicolas Larmonier
Imatinib mesylate (Gleevec, STI571), a selective inhibitor of a restricted number of tyrosine kinases, has been effectively used for the treatment of Philadelphia chromosome-positive leukemias and gastrointestinal stromal tumors. Imatinib may also directly influence immune cells. Suppressive as well as stimulating effects of this drug on CD4(+) and CD8(+) T lymphocytes or dendritic cells have been reported. In the current study, we have investigated the influence of imatinib mesylate on CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg), a critical population of lymphocytes that contributes to peripheral tolerance. Used at concentrations achieved clinically, imatinib impaired Treg immunosuppressive function and FoxP3 expression but not production of IL-10 and TGF-beta in vitro. Imatinib significantly reduced the activation of the transcription factors STAT3 and STAT5 in Treg. Analysis of Treg TCR-induced signaling cascade indicated that imatinib inhibited phosphorylation of ZAP70 and LAT. Substantiating these observations, imatinib treatment of mice decreased Treg frequency and impaired their immunosuppressive function in vivo. Furthermore, imatinib mesylate significantly enhanced antitumor immune responses to dendritic cell-based immunization against an imatinib-resistant BCR-ABL negative lymphoma. The clinical applications of imatinib mesylate might thus be expanded with its use as a potent immunomodulatory agent targeting Treg in cancer immunotherapy.<br /><br />
Displaying 5 of 7 publications more | all